Information processing consists of encoding a state, such as the geometry of an image, on a carrier such as a stream of electrons, and then submitting this encoded state to a series of transformations specified by a set of instructions called a program. In principle the carrier could be anything, even steel balls or onions, and the machine that implements the instructions need not be electronic, it could be mechanical or fluidic.

Digital computers implement information processing. From the earliest days of digital computers people have suggested that these devices may one day be conscious. One of the earliest workers to consider this idea seriously was Alan Turing.

If technologists were limited to the use of the principles of digital computing when creating a conscious entity they would have the problems associated with the philosophy of strong AI. The most serious problem is John Searle's Chinese room argument in which it is demonstrated that the contents of an information processor have no intrinsic meaning - at any moment they are just a set of electrons or steel balls etc.

Searle's objection does not convince direct perception proponents because they would maintain that 'meaning' is only to be found in objects of perception. The objection is also countered by the concept of emergentism which proposes some unspecified new physical phenomenon arises from processor complexity.

The misnomer digital sentience is sometimes used in the context of artificial intelligence research. Sentience means the ability to feel or perceive in the absence of thoughts, especially inner speech. It suggests conscious experience is a state rather than a process.